Artificial intelligence platform shows potential for thyroid cancer screening and staging from ultrasound images
PHOENIX, February 24, 2022
A new study finds that an artificial intelligence (AI) model incorporating multiple methods of machine learning accurately detects thyroid cancer and predicts pathological and genomic outcomes through analysis of routine ultrasound images. The AI model could present a low-cost, non-invasive option for screening, staging and personalized treatment planning for the disease. Findings from the study will be presented tomorrow at the 2022 Multidisciplinary Head and Neck Cancers Symposium.
"Thyroid cancer is one of the most rapidly increasing cancers in the United States, largely due to increased detection and improved diagnostics. We have developed an artificial intelligence platform that would examine ultrasound images and predict with high accuracy whether a potentially problematic thyroid nodule is, in fact, cancerous. If it is cancerous, we can further predict the tumor stage, the nodal stage and the presence or absence of BRAF mutation," said senior author Annie Chan, MD, Director of the Head and Neck Radiation Oncology Research Program at the Mass General Cancer Center. "If caught early, this disease is highly treatable, and patients generally can expect to live a long time after treatment."
To train and validate the AI platform, researchers obtained 1,346 thyroid nodule images through routine diagnostic ultrasound from 784 patients. The ultrasound images were divided into two datasets, one for internal training and validation, and one for external validation. Malignancy was confirmed with samples obtained from fine needle biopsy. Pathological staging and mutational status were confirmed with operative reports and genomic sequencing, respectively.
Unlike the conventional AI approach, researchers combined multiple AI methods for the model, including (1) radiomics, which extracts a large number of quantitative features from the images; (2) topological data analysis (TDA), which assesses the spatial relationship between data points in the images; (3) deep learning, where algorithms run the data through multiple layers of an AI neural network to generate predictions; and (4) machine learning (ML), in which an algorithm utilizes Thyroid Imaging Reporting and Data System (TI-RADS)-defined ultrasound properties as ML features. “By integrating different AI methods, we were able to capture more data while minimizing noise. This allows us to achieve a high level of accuracy in making predictions,” said Dr. Chan.
A multimodal platform utilizing these four methods accurately predicted 98.7% of thyroid nodule malignancies in the internal dataset, significantly outperforming individual AI modalities used alone. By comparison, the individual radiomics model predicted 89% of malignancies (p<0.001 compared to the multimodal platform), the deep learning model achieved 87% accuracy (p=0.002), and TDA and (ML)TI-RADS were accurate for 81% and 80% of the samples, respectively (both p<0.001). On the external validation dataset, the model was 93% accurate for malignancy prediction.
A multimodal model comprising radiomics, TDA and (ML)TI-RADS also was able to distinguish pathological stage (93% accuracy for T-stage, 89% for N-stage, and 98% for extrathyroidal extension). Additionally, the model identified BRAF V600E mutation, which can be treated with targeted therapy, with 96% accuracy.
###
Dr. Chan will present this study in Plenary Session II on Friday, February 25, at 10:50 a.m. Mountain time. To access the meeting or schedule interviews with researchers, contact ASTRO's media relations team at [email protected]. The abstract is available online.
Disclosures for Dr. Chan are available online.
This release contains updated study information from the author.
Attribution to the 2022 Multidisciplinary Head & Neck Cancers Symposium requested in all coverage.
Resources for Patients and Caregivers
- Videos: Radiation Therapy for Head and Neck Cancers; (Spanish version), An Introduction to Radiation Therapy; (Spanish version)
- Digital brochure: Radiation Therapy for Head and Neck Cancers
- ASTRO's clinical guidelines
- Additional patient brochures, videos and information on radiation therapy from RTAnswers.org
About the Symposium
The 2022 Multidisciplinary Head and Neck Cancers Symposium takes place February 24-26 at the JW Marriott Phoenix Desert Ridge in Phoenix, Arizona. This two-and-a-half-day meeting for the head and neck cancer community provides up-to-date information on clinical research, treatment strategies, supportive care, scientific breakthroughs and toxicity mitigation for patients with head and neck cancers. A major focus is placed on the multidisciplinary nature of disease management and the incorporation of all treatment modalities to achieve best outcomes. The meeting is co-sponsored by the American Society for Radiation Oncology (ASTRO), the American Society of Clinical Oncology (ASCO), the American Head & Neck Society (AHNS) and the Society for Immunotherapy of Cancer (SITC).
About ASTRO
The American Society for Radiation Oncology (ASTRO) is the largest radiation oncology society in the world, with nearly 10,000 members who are physicians, nurses, biologists, physicists, radiation therapists, dosimetrists and other health care professionals who specialize in treating patients with radiation therapies. For information on radiation therapy, visit RTAnswers.org. To learn more about ASTRO, visit our website and follow us on social media.